Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
2.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618963

RESUMO

Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of newborns. The tumor follows a life cycle of rapid proliferation in infancy, followed by slow involution in childhood. This unique life cycle has attracted the interest of basic and clinical scientists alike as a paradigm for vasculogenesis, angiogenesis, and vascular regression. Unanswered questions persist about the genetic and molecular drivers of the proliferating and involuting phases. The beta blocker propranolol usually accelerates regression of problematic IHs, yet its mechanism of action on vascular proliferation and differentiation is unclear. Some IHs fail to respond to beta blockers and regrow after discontinuation. Side effects occur and long-term sequelae of propranolol treatment are unknown. This poses clinical challenges and raises novel questions about the mechanisms of vascular overgrowth in IH.


Assuntos
Hemangioma , Médicos , Neoplasias Vasculares , Recém-Nascido , Humanos , Propranolol/uso terapêutico , Progressão da Doença , Hemangioma/tratamento farmacológico
3.
Acta Neuropathol Commun ; 12(1): 47, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532508

RESUMO

Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cß3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.


Assuntos
Capilares/anormalidades , Síndrome de Sturge-Weber , Malformações Vasculares , Humanos , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patologia , Síndrome de Sturge-Weber/terapia , Células Endoteliais/metabolismo , Capilares/patologia , Macrófagos/metabolismo , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
4.
Vascul Pharmacol ; 155: 107368, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548093

RESUMO

Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.

5.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
6.
Sci Rep ; 13(1): 11074, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422456

RESUMO

Somatic activating MAP2K1 mutations in endothelial cells (ECs) cause extracranial arteriovenous malformation (AVM). We previously reported the generation of a mouse line allowing inducible expression of constitutively active MAP2K1 (p.K57N) from the Rosa locus (R26GT-Map2k1-GFP/+) and showed, using Tg-Cdh5CreER, that EC expression of mutant MAP2K1 is sufficient for the development of vascular malformations in the brain, ear, and intestines. To gain further insight into the mechanism by which mutant MAP2K1 drives AVM development, we induced MAP2K1 (p.K57N) expression in ECs of postnatal-day-1 pups (P1) and investigated the changes in gene expression in P9 brain ECs by RNA-seq. We found that over-expression of MAP2K1 altered the transcript abundance of > 1600 genes. Several genes had > 20-fold changes between MAP2K1 expressing and wild-type ECs; the highest were Col15a1 (39-fold) and Itgb3 (24-fold). Increased expression of COL15A1 in R26GT-Map2k1-GFP/+; Tg-Cdh5CreER+/- brain ECs was validated by immunostaining. Ontology showed that differentially expressed genes were involved in processes important for vasculogenesis (e.g., cell migration, adhesion, extracellular matrix organization, tube formation, angiogenesis). Understanding how these genes and pathways contribute to AVM formation will help identify targets for therapeutic intervention.


Assuntos
Malformações Arteriovenosas , Malformações Vasculares , Animais , Camundongos , Malformações Arteriovenosas/genética , Células Endoteliais/metabolismo , Mutação , Malformações Vasculares/metabolismo , MAP Quinase Quinase 1/genética
7.
Arterioscler Thromb Vasc Biol ; 43(5): e124-e131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924233

RESUMO

BACKGROUND: Endothelial-to-mesenchymal transition (EndMT) is a dynamic process in which endothelial cells acquire mesenchymal properties and in turn contribute to tissue remodeling and growth. Previously, we found EndMT associated with mitral valve adaptation after myocardial infarction. Furthermore, mitral valve endothelial cells collected at 6 months post-myocardial infarction expressed the pan-leukocyte marker CD45 and EndMT markers. Additionally, mitral valve endothelial cells induced to undergo EndMT with TGF (transforming growth factor)-ß1 strongly coexpressed CD45 but not CD11b or CD14. Pharmacologic inhibition of the CD45 PTPase (protein tyrosine phosphatase) domain in mitral valve endothelial cells blocked TGFß-induced EndMT. This prompted us to speculate that, downstream of TGFß, CD45 induces EndMT. METHODS: We activated the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) using CRISPR (cluster regularly interspaced short palindromic repeats)/inactive Cas9 (CRISPR-associated protein 9) transcriptional activation. Bulk RNA sequencing was performed on control ECFCs and CD45-positive ECFCs to identify transcriptomic changes. Three functional assays-cellular migration, collagen gel contraction, and transendothelial electrical resistance-were conducted to assess mesenchymal properties in CD45-positive ECFCs. RESULTS: Activation of the endogenous CD45 promoter in ECFC and 3 additional sources of endothelial cells induced expression of several genes implicated in EndMT. In addition, CD45-positive ECFCs showed increased migration, a hallmark of EndMT, increased collagen gel contraction, a hallmark of mesenchymal cells, and decreased cell-cell barrier integrity, indicating reduced endothelial function. CONCLUSIONS: CD45 is sufficient to incite an EndMT phenotype and acquisition of mesenchymal cell properties in normal human ECFCs. We speculate that CD45, through its C-terminal PTPase domain, initiates signaling events that drive EndMT.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Células Cultivadas , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Infarto do Miocárdio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Circulation ; 147(8): 669-685, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36591786

RESUMO

BACKGROUND: Epsin endocytic adaptor proteins are implicated in the progression of atherosclerosis; however, the underlying molecular mechanisms have not yet been fully defined. In this study, we determined how epsins enhance endothelial-to-mesenchymal transition (EndoMT) in atherosclerosis and assessed the efficacy of a therapeutic peptide in a preclinical model of this disease. METHODS: Using single-cell RNA sequencing combined with molecular, cellular, and biochemical analyses, we investigated the role of epsins in stimulating EndoMT using knockout in Apoe-/- and lineage tracing/proprotein convertase subtilisin/kexin type 9 serine protease mutant viral-induced atherosclerotic mouse models. The therapeutic efficacy of a synthetic peptide targeting atherosclerotic plaques was then assessed in Apoe-/- mice. RESULTS: Single-cell RNA sequencing and lineage tracing revealed that epsins 1 and 2 promote EndoMT and that the loss of endothelial epsins inhibits EndoMT marker expression and transforming growth factor-ß signaling in vitro and in atherosclerotic mice, which is associated with smaller lesions in the Apoe-/- mouse model. Mechanistically, the loss of endothelial cell epsins results in increased fibroblast growth factor receptor-1 expression, which inhibits transforming growth factor-ß signaling and EndoMT. Epsins directly bind ubiquitinated fibroblast growth factor receptor-1 through their ubiquitin-interacting motif, which results in endocytosis and degradation of this receptor complex. Consequently, administration of a synthetic ubiquitin-interacting motif-containing peptide atheroma ubiquitin-interacting motif peptide inhibitor significantly attenuates EndoMT and progression of atherosclerosis. CONCLUSIONS: We conclude that epsins potentiate EndoMT during atherogenesis by increasing transforming growth factor-ß signaling through fibroblast growth factor receptor-1 internalization and degradation. Inhibition of EndoMT by reducing epsin-fibroblast growth factor receptor-1 interaction with a therapeutic peptide may represent a novel treatment strategy for atherosclerosis.


Assuntos
Aterosclerose , Fator de Crescimento Transformador beta , Camundongos , Animais , Fatores de Crescimento de Fibroblastos , Apolipoproteínas E , Aterosclerose/genética , Receptores de Fatores de Crescimento de Fibroblastos , Fatores de Crescimento Transformadores , Ubiquitinas
10.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787784

RESUMO

Background: Lymphatic malformations (LMs) often pose treatment challenges due to a large size or a critical location that could lead to disfigurement, and there are no standardized treatment approaches for either refractory or unresectable cases. Methods: We examined the genomic landscape of a patient cohort of LMs (n = 30 cases) that underwent comprehensive genomic profiling using a large-panel next-generation sequencing assay. Immunohistochemical analyses were completed in parallel. Results: These LMs had low mutational burden with hotspot PIK3CA mutations (n = 20) and NRAS (n = 5) mutations being most frequent, and mutually exclusive. All LM cases with Kaposi sarcoma-like (kaposiform) histology had NRAS mutations. One index patient presented with subacute abdominal pain and was diagnosed with a large retroperitoneal LM harboring a somatic PIK3CA gain-of-function mutation (H1047R). The patient achieved a rapid and durable radiologic complete response, as defined in RECIST1.1, to the PI3Kα inhibitor alpelisib within the context of a personalized N-of-1 clinical trial (NCT03941782). In translational correlative studies, canonical PI3Kα pathway activation was confirmed by immunohistochemistry and human LM-derived lymphatic endothelial cells carrying an allele with an activating mutation at the same locus were sensitive to alpelisib treatment in vitro, which was demonstrated by a concentration-dependent drop in measurable impedance, an assessment of cell status. Conclusions: Our findings establish that LM patients with conventional or kaposiform histology have distinct, yet targetable, driver mutations. Funding: R.P. and W.A. are supported by awards from the Levy-Longenbaugh Fund. S.G. is supported by awards from the Hugs for Brady Foundation. This work has been funded in part by the NCI Cancer Center Support Grants (CCSG; P30) to the University of Arizona Cancer Center (CA023074), the University of New Mexico Comprehensive Cancer Center (CA118100), and the Rutgers Cancer Institute of New Jersey (CA072720). B.K.M. was supported by National Science Foundation via Graduate Research Fellowship DGE-1143953. Clinical trial number: NCT03941782.


Assuntos
Antineoplásicos , Classe I de Fosfatidilinositol 3-Quinases , GTP Fosfo-Hidrolases , Linfangioma , Anormalidades Linfáticas , Proteínas de Membrana , Tiazóis , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Linfangioma/tratamento farmacológico , Linfangioma/genética , Anormalidades Linfáticas/tratamento farmacológico , Anormalidades Linfáticas/genética , Proteínas de Membrana/genética , Mutação , Análise de Sequência de DNA , Tiazóis/farmacologia , Tiazóis/uso terapêutico
11.
J Am Heart Assoc ; 11(7): e023695, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35348006

RESUMO

Background The onset and mechanisms of endothelial-to-mesenchymal transition (EndMT) in mitral valve (MV) leaflets following myocardial infarction (MI) are unknown, yet these events are closely linked to stiffening of leaflets and development of ischemic mitral regurgitation. We investigated whether circulating molecules present in plasma within days after MI incite EndMT in MV leaflets. Methods and Results We examined the onset of EndMT in MV leaflets from 9 sheep with inferior MI, 8 with sham surgery, and 6 naïve controls. Ovine MVs 8 to 10 days after inferior MI displayed EndMT, shown by increased vascular endothelial cadherin/α-smooth muscle actin-positive cells. The effect of plasma on EndMT in MV endothelial cells (VECs) was assessed by quantitative polymerase chain reaction, migration assays, and immunofluorescence. In vitro, post-MI plasma induced EndMT marker expression and enhanced migration of mitral VECs; sham plasma did not. Analysis of sham versus post-MI plasma revealed a significant drop in the Wnt signaling antagonist sFRP3 (secreted frizzled-related protein 3) in post-MI plasma. Addition of recombinant sFRP3 to post-MI plasma reversed its EndMT-inducing effect on mitral VECs. RNA-sequencing analysis of mitral VECs exposed to post-MI plasma showed upregulated FOXM1 (forkhead box M1). Blocking FOXM1 reduced EndMT transcripts in mitral VECs treated with post-MI plasma. Finally, FOXM1 induced by post-MI plasma was downregulated by sFRP3. Conclusions Reduced sFRP3 in post-MI plasma facilitates EndMT in mitral VECs by increasing the transcription factor FOXM1. Restoring sFRP3 levels or inhibiting FOXM1 soon after MI may provide a novel strategy to modulate EndMT in the MV to prevent ischemic mitral regurgitation and heart failure.


Assuntos
Valva Mitral , Infarto do Miocárdio , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular , Infarto do Miocárdio/metabolismo , Ovinos , Via de Sinalização Wnt
12.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874911

RESUMO

Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.


Assuntos
Atenolol/farmacologia , Hemangioma , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica , Propranolol/farmacologia , Animais , Hemangioma/irrigação sanguínea , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Arterioscler Thromb Vasc Biol ; 42(1): e27-e43, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670408

RESUMO

OBJECTIVE: Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) ß3, a downstream effector of Gαq. Activated PLCß3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCß3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS: Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCß3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.


Assuntos
Angiopoietina-2/metabolismo , Capilares/metabolismo , Células Progenitoras Endoteliais/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neovascularização Patológica , Síndrome de Sturge-Weber/metabolismo , Adolescente , Adulto , Idoso , Angiopoietina-2/genética , Animais , Capilares/anormalidades , Células Cultivadas , Criança , Pré-Escolar , Células Progenitoras Endoteliais/patologia , Células Progenitoras Endoteliais/transplante , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos Nus , Mutação , Fenótipo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patologia , Regulação para Cima
14.
Front Cardiovasc Med ; 8: 688396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458332

RESUMO

Background: Following myocardial infarction, mitral regurgitation (MR) is a common complication. Previous animal studies demonstrated the association of endothelial-to-mesenchymal transition (EndMT) with mitral valve (MV) remodeling. Nevertheless, little is known about how MV tissue responds to ischemic heart changes in humans. Methods: MVs were obtained by the Cardiothoracic Surgical Trials Network from 17 patients with ischemic mitral regurgitation (IMR). Echo-doppler imaging assessed MV function at time of resection. Cryosections of MVs were analyzed using a multi-faceted histology and immunofluorescence examination of cell populations. MVs were further analyzed using unbiased label-free proteomics. Echo-Doppler imaging, histo-cytometry measures and proteomic analysis were then integrated. Results: MVs from patients with greater MR exhibited proteomic changes associated with proteolysis-, inflammatory- and oxidative stress-related processes compared to MVs with less MR. Cryosections of MVs from patients with IMR displayed activated valvular interstitial cells (aVICs) and double positive CD31+ αSMA+ cells, a hallmark of EndMT. Univariable and multivariable association with echocardiography measures revealed a positive correlation of MR severity with both cellular and geometric changes (e.g., aVICs, EndMT, leaflet thickness, leaflet tenting). Finally, proteomic changes associated with EndMT showed gene-ontology enrichment in vesicle-, inflammatory- and oxidative stress-related processes. This discovery approach indicated new candidate proteins associated with EndMT regulation in IMR. Conclusion: We describe an atypical cellular composition and distinctive proteome of human MVs from patients with IMR, which highlighted new candidate proteins implicated in EndMT-related processes, associated with maladaptive MV fibrotic remodeling.

15.
Arterioscler Thromb Vasc Biol ; 41(9): 2357-2369, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196216

RESUMO

Endothelial-to-mesenchymal transition is a dynamic process in which endothelial cells suppress constituent endothelial properties and take on mesenchymal cell behaviors. To begin the process, endothelial cells loosen their cell-cell junctions, degrade the basement membrane, and migrate out into the perivascular surroundings. These initial endothelial behaviors reflect a transient modulation of cellular phenotype, that is, a phenotypic modulation, that is sometimes referred to as partial endothelial-to-mesenchymal transition. Loosening of endothelial junctions and migration are also seen in inflammatory and angiogenic settings such that endothelial cells initiating endothelial-to-mesenchymal transition have overlapping behaviors and gene expression with endothelial cells responding to inflammatory signals or sprouting to form new blood vessels. Reduced endothelial junctions increase permeability, which facilitates leukocyte trafficking, whereas endothelial migration precedes angiogenic sprouting and neovascularization; both endothelial barriers and quiescence are restored as inflammatory and angiogenic stimuli subside. Complete endothelial-to-mesenchymal transition proceeds beyond phenotypic modulation such that mesenchymal characteristics become prominent and endothelial functions diminish. In proadaptive, regenerative settings the new mesenchymal cells produce extracellular matrix and contribute to tissue integrity whereas in maladaptive, pathologic settings the new mesenchymal cells become fibrotic, overproducing matrix to cause tissue stiffness, which eventually impacts function. Here we will review what is known about how TGF (transforming growth factor) ß influences this continuum from junctional loosening to cellular migration and its relevance to cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/patologia , Células Endoteliais/patologia , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Movimento Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Permeabilidade , Fenótipo , Transdução de Sinais
16.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400686

RESUMO

Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor-stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.


Assuntos
Hemangioma/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas ras/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular , Movimento Celular/genética , Proliferação de Células/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Hemangioma/patologia , Hemangioma/terapia , Humanos , Técnicas In Vitro , Lactente , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Commun ; 11(1): 3984, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770009

RESUMO

The epsin family of endocytic adapter proteins are widely expressed, and interact with both proteins and lipids to regulate a variety of cell functions. However, the role of epsins in atherosclerosis is poorly understood. Here, we show that deletion of endothelial epsin proteins reduces inflammation and attenuates atherosclerosis using both cell culture and mouse models of this disease. In atherogenic cholesterol-treated murine aortic endothelial cells, epsins interact with the ubiquitinated endoplasmic reticulum protein inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which triggers proteasomal degradation of this calcium release channel. Epsins potentiate its degradation via this interaction. Genetic reduction of endothelial IP3R1 accelerates atherosclerosis, whereas deletion of endothelial epsins stabilizes IP3R1 and mitigates inflammation. Reduction of IP3R1 in epsin-deficient mice restores atherosclerotic progression. Taken together, epsin-mediated degradation of IP3R1 represents a previously undiscovered biological role for epsin proteins and may provide new therapeutic targets for the treatment of atherosclerosis and other diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Aterosclerose/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteólise , Proteínas Adaptadoras de Transporte Vesicular/química , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/patologia , Cálcio/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Feminino , Deleção de Genes , Células HEK293 , Homeostase , Humanos , Inflamação/patologia , Masculino , Camundongos Knockout , Ligação Proteica , Domínios Proteicos , Ubiquitinação
18.
J Am Coll Cardiol ; 75(4): 395-405, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32000951

RESUMO

BACKGROUND: Mitral leaflet enlargement has been identified as an adaptive mechanism to prevent mitral regurgitation in dilated left ventricles (LVs) caused by chronic aortic regurgitation (AR). This enlargement is deficient in patients with functional mitral regurgitation, which remains frequent in the population with ischemic cardiomyopathy. Maladaptive fibrotic changes have been identified in post-myocardial infarction (MI) mitral valves. It is unknown if these changes can interfere with valve growth and whether they are present in other valves. OBJECTIVES: This study sought to test the hypothesis that MI impairs leaflet growth, seen in AR, and induces fibrotic changes in mitral and tricuspid valves. METHODS: Sheep models of AR, AR + MI, and controls were followed for 90 days. Cardiac magnetic resonance, echocardiography, and computed tomography were performed at baseline and 90 days to assess LV volume, LV function, mitral regurgitation and mitral leaflet size. Histopathology and molecular analyses were performed in excised valves. RESULTS: Both experimental groups developed similar LV dilatation and dysfunction. At 90 days, mitral valve leaflet size was smaller in the AR + MI group (12.8 ± 1.3 cm2 vs. 15.1 ± 1.6 cm2, p = 0.03). Mitral regurgitant fraction was 4% ± 7% in the AR group versus 19% ± 10% in the AR + MI group (p = 0.02). AR + MI leaflets were thicker compared with AR and control valves. Increased expression of extracellular matrix remodeling genes was found in both the mitral and tricuspid leaflets in the AR + MI group. CONCLUSIONS: In these animal models of AR, the presence of MI was associated with impaired adaptive valve growth and more functional mitral regurgitation, despite similar LV size and function. More pronounced extracellular remodeling was observed in mitral and tricuspid leaflets, suggesting systemic valvular remodeling after MI.


Assuntos
Insuficiência da Valva Mitral/fisiopatologia , Valva Mitral/diagnóstico por imagem , Infarto do Miocárdio/complicações , Remodelação Ventricular , Animais , Insuficiência da Valva Aórtica/complicações , Ecocardiografia Tridimensional , Matriz Extracelular/metabolismo , Feminino , Fibrose , Imageamento por Ressonância Magnética , Masculino , Isquemia Miocárdica/complicações , Ovinos , Tomografia Computadorizada por Raios X , Valva Tricúspide/diagnóstico por imagem
19.
Clin Genet ; 97(5): 736-740, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909475

RESUMO

Diffuse capillary malformation with overgrowth (DCMO) is a clinical diagnosis describing patients with multiple, extensive capillary malformations (CMs) associated with overgrowth and foot anomalies. The purpose of the study was to identify somatic variants in DCMO. Skin containing CM and overgrown subcutaneous adipose tissue was collected from patients with DCMO. Exons from 447 cancer-related genes were sequenced using OncoPanel. Variant-specific droplet digital PCR (ddPCR) independently confirmed the variants and determined variant allele frequencies (VAF). One subject contained a somatic PIK3CA p.G106V variant. A second patient had a PIK3CA p.D350G variant. VAF was 27% to 29% in skin and 16% to 28% in subcutaneous adipose. Variants were enriched in endothelial cells (VAF 50%-51%) compared to nonendothelial cells (1%-8%). DCMO is associated with somatic PIK3CA variants and should be considered on the PIK3CA-related overgrowth spectrum (PROS). Variants are present in both skin and subcutaneous adipose and are enriched in endothelial cells.


Assuntos
Anormalidades Múltiplas/genética , Capilares/anormalidades , Classe I de Fosfatidilinositol 3-Quinases/genética , Predisposição Genética para Doença , Malformações Vasculares/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Capilares/metabolismo , Capilares/patologia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Mutação/genética , Malformações Vasculares/patologia , Adulto Jovem
20.
Bio Protoc ; 10(2): e3487, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654720

RESUMO

Infantile hemangioma (IH) is a vascular tumor noted for its excessive blood vessel formation during infancy, glucose-transporter-1 (GLUT1)-positive staining of the blood vessels, and its slow spontaneous involution over several years in early childhood. For most children, IH poses no serious threat because it will eventually involute, but a subset can destroy facial structures and impair vision, breathing and feeding. To unravel the molecular mechanism(s) driving IH-specific vascular overgrowth, which to date remains elusive, investigators have studied IH histopathology, the cellular constituents and mRNA expression. Hemangioma endothelial cells (HemEC) were first isolated from surgically removed IH specimens in 1982 by Mulliken and colleagues ( Mulliken et al., 1982 ). Hemangioma stem cells (HemSC) were isolated in 2008, hemangioma pericytes in 2013 and GLUT1-positive HemEC in 2015. Indeed, as we describe here, it is possible to isolate HemSC, GLUT1-positive HemEC, GLUT1-negative HemEC and HemPericytes from a single proliferating IH tissue specimen. This is accomplished by sequential selection using antibodies against specific cell surface markers: anti-CD133 to select HemSC, anti-GLUT1 and anti-CD31 to select HemECs and anti-PDGFRß to select HemPericytes. IH-derived cells proliferate well in culture and can be used for in vitro and in vivo vasculogenesis and angiogenesis assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...